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1. Objective

Consider a rigid-link robot with the dynamic model 7

‘7= H(g;p)i + Cla.6:9)d + G(g;p) + N (1)

where N(.) denotes a bounded external disturbance (def-
initions of other terms and variables can be found in the
literature). The objective addressed herein is to find a
control strategy that exhibits the following features: (1)
simple to implement, (2) easy to code for program and
(3) robust to possible time-varying uncertainties
2. Results

Define tracking error € as € = ¢ — ¢°, where ¢* denotes
the desired trajectory. Alsolet W = é+ D¢, y, = ¢* — Dk,
and z, = §* — Dé — kk~'W, where D = DT > 0 and ()
is one of the rate functions which is introduced to adjust
rate-of-convergence (ROC) (see [4]).
Definition 1

Let 1(t) be defined on [to, o). ¥(t) is in the class V; if
v(t) is nonnegative constant or in V; if v(t) is bounded,
positive, and decreasing for allt € [to, 00).
The robust control law is given by

7= H,(q";p")zs+Ca(q", 47 P" We+Gi(¢7; ") - KW +Ua,

(1)
where K = KT > 0, and H,(.), C.(.), and G,(.) are
simplified versions of H, C, and G, respectively. U, is an
auxiliary control defined by T

Wn?

Up = — oo,
T Wl + (1)

(2)

where v(t) € Vy or Vyy and 7 is a nonnegative scalar
nonlinear function defined as

WH, - Hlli=ll + 1IC = Cllllwell +1IG. = G - N
< aolle, ]l + eallglllvell + a2 £

In this equation, a; are constants representing bounds on
the modelling errors. There are many possible choices for

v(t) in U,, and different choices leads to different tracking
properties. The v(t) defined by

v(t) = pui(1 e 3)

are in Vy or Vyy if m, n, and p are chosen properly (v
and v, are appropriate positive constants). Specifically,
if p = =1, myn = 0, one gets v(t) = vie™" 2 Ho,
which gives, Up = — L. This is called saturation
(or boundary layer) controller [1] and has been widely
used to achieve bounded stability. Another specific choice
for v(t) (p = =1, m =0, n = 1) is ¥(t) = vie v,

which gives the strategy proposed by Dawson, et al. {2,
w 3

Us = —wimsvie—" An extreme case, n — 00, M — 00
and p = —1, gives v(t) = 0, which corresponds to
the variable structure control (3], Us = —"%“n. As is

shown later, v(t) = 0 gives the fastest convergence, while
v(t) = po gives the slowest. However, due to physical
limitations, “too fast” could lead to chattering. Hence.
the choice of v(t) depends on the requirements for ROC,
transient response, and steady state performance.
Tracking stability results based on the so-called gener-
alized energy accumulation principle [4] are given next.
Theorem 1; Given (1) and (2), if v(t) and x(t) are chosen
such that
t
/ Y1)k} (r)dr £ C3 < oo VtE([to, ), (4)
to
then stable path tracking is ensured and the rate-of-

convergence is at least k~1(t).
Proof (outline): The closed-loop model is governed by

H(g:p)(W + kx™'W) + C(a,;p)W = —KW
+ 68H(q;p)z. +6C(q,4:p)ys +6G(q,t;p) + Vs
where §H() = H,— H,6C()=C,—C,8G(.) =G, =G -
N. Introducing the transformation ¥ = sW gives
H(gp¥ + C(qg.4;p)% =—-K¥+86H(qp)zsx
+ 8C(¢,4;P)¥sk + 86(q,t;p)x + Usk.



According to the criteria in [4], boundedness of the accu-

mulated generalized energy, f:o ¥T KWdr, proves track-
ing stability. In fact, - C

4
J¢ = / YT K¥dr
to

! . t
= - [ H@pr- [ ¥ c ipvar
ta

ta

]
+ T {6H(g;p)z,x + 6C(q,4;P)vek + 6G(q,1; p)s}

to

1
+ / T U, kdr.

to
The symmetric positive definite property of H(.) and the
skew-symmetric property of H(.) — 2C(.) yields,
t t
JE<Cl +/ H\I'Hr]ndr+/ YT U,kdr (5)
to to

where C2 = 1WT HWk?|;=y,. Inserting (2) into (5),

o< G [ lidr— [ 9T g
L G 0% +/ K T—/ K———————dr
o T ST W+ ()
‘ Wiln
= CE+/ VTICz—————” dr
O Wl + v
t
< Ci+ / v(r)&2(r)dr. (6)
to

Condition (4) implies J¢ is bounded. The result follows
[4].

Theorem 2: Given (1) and (2), if v(t) and &(t) are chosen
such that

1
lim sup lt / V(1) (1)dr < C3 < oo Vit € [tg,0),

t—moo t— 0 Jig

then stable path tracking is also ensured.
Proof: The proof follows the approach used in [4].
Corollary If x(t) and v(t) are chosen such that

A (t)(t) < C} < oo, ™

then stable path tracking is ensured.
Proof: Under the condition of the Corollary, it is
seen that LZU(T)ICZ(T)dT < CX(t — to). Therefore,

c

~3
limsup;_, ‘—i,; = limsup,_ '—E‘,'-; +C2
Several observations are made. First H,, C, and G,
are not based on ¢, ¢ and p, but on the desired path
{¢*,¢"} and parameters p* which can be precomputed off-
line. Second, one does not need to re-organize the robotic

dynamics (so as to isolate unknown parameters) before .

calculating the control torque. Also a simple way to get
H,(), C.(), and G,(.) is to set, H, = 0, C, = 0, and
G, = 0, the control torque reduces to 7 = —KW + U,.
This gives the same structure as in [2]. However, since

Uall < 0, H, =0,C, =0, and G, = 0 leads to a larger
U, which could require more control energy.
3. Synthesis Examples
Example 1: (Natural Rate-of-Convergence )

Assume that a natural ROC is sufficient ( x(t) = 1).
Then

1
Je<C? +/ v(r)dr.

1o
Suppose that v(t) is chosen such that J° < C? +
f:o v(r)dr < J*, where J* is a design specification.
If L(t) = vie~¥*, with v; > O,v3 > 0, then J4 <
C? + %:e"’"". In order to meet the specification, v; and
vy are determined such that C} + ¥e~* < J*. Suppose
to = 0 and the initial condition is such that C} = 10. It
the performance specification is J* = 12, then %: < 2.50
by choosing v2 > 0 and 0 < vy < 2v2, J4 < J*.
Example 2: (Variable Structure Control)

For any «(t), J¢ is ensured to be less than or equal to
C? (see (6)) by choosing v(t) = 0. This implies that the
ROC can be arbitrarily fast and the accumulated tracking
error is smaller than any other choice of ¥. So one might
conclude that variable structure control gives the best
control performance and the greatest ROC. However, 1t is
its fast speed that causes chattering. So from a practical
point of view, one should not require too large a ROC
over the entire period of operation. A piecewise ROC
may be useful. This can be achieved by methods similar
to those given in [4].

4. Comment

Clearly v plays an interesting role in these robust con-
trol strategies. First, v is related to the overall tracking
performance in that the bound on J¢ depends on the
choice of v. Second, v specifies the boundary layer in
the strategies. Since v is time varying, the boundary
layer is also varying. This property can be used to retain
the merits of the VSC strategy and avoid the problem of
chattering.
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Abstract

Based on the generalized energy accumulation princi-
ple, criteria for system stability and performance analysis
are established in the first part of this work [8]. These
criteria are of immediate use in many systems. The main
purpose in this part of the work is to apply these criteria
to robotic systems. Both adaptive and robust control are
investigated. -

1. Introduction

The concept of stability concerning a dynamic sys-

tern is always important to system engineers. Motivated
by the generalized emergy accumulation principle, cer-
tain criteria for testing system stability are proposed in
[8]. As a continuation to that work, this paper demon-
strates the applications of the established criteria to a
practical system — robotic system. Specifically, the path
tracking control problem of robotic systems is consid-
ered. By introducing the concept of rate transforma-
tion, new adaptive and robust control strategies are de-
veloped which achieve stable path tracking and provide
a priori information about how fast the tracking errors
will converge. With these strategies, different rates-of-
convergence (ROCs) can be obtained by simply chooe-
ing a different scalar rate function x(t) (to be defined
later). It turns out that the conventional adaptive con-
trol scheme is a special case of the proposed strategies
(i.e., with x(t) = 1). Global exponential path tracking is
easily achieved by simply setting x(¢) = e**, where A > 0.
Moreover, one may obtain other types of path tracking
than asymptotic and exponential tracking by choosing a
proper «x.

2. Review of Stability Criteria

For convenience and continuity, stability criteria estab-
lished in [8] are summarised first.

By introducing a rate function x(t) (see §3 for defini-
tion), stability criteria represented by integral inequalities

in [8] can be unified as follows,

Jé = /. 3(1)G[z(r))dr < c3 < o,

to

where G.(.) is a generalized energy function of the sys.
tem and C4 is a real number. To analyze system stability
and performance, one only needs to verify these equalitie:
(see [8] for more details). It is seen that asymptotic sta
bility corresponds to x(t) = 1, while exponential stability
corresponds to x(t) = e**.

3. A Useful Lemma (8]

The objective is to derive new adaptive and robust con-
trol strategies, which ensure stable path tracking and al-
low adjustable ROCs. To this end, the concepts of rat:
function and rate transformation are introduced.
Definition 3.1 Rate Function

A real function of time, x(t), is a rate function (denote:
by x(t) € 8), if it satisfies the following conditions:

(1) x(t) is positive for all t € [to,0),

(2) (to) is bounded,

(3) «(t) is increasing, and

(4) &(t) is well-defined for t € [tg, o).

Note that under these conditions, such a x(t) is invertiblt
and x~!(t) is upper bounded and decreasing. Obviou:
examples for such a rate function include x = 1, x = 1 +1
k= e, (14 1)e*, (1+t)+e (A > 0) etc. (see [8] fo
other types).

Deflnition 3.2 Rate Transformation
The rate transformation is defined as

¥ = lc(t)x, (3.1

where x(t) is a rate function as defined before.

The terminology “rate transformation” is motivated b,
the fact that such a transformation affects the rate o
convergence of the system, as is shown in the following.

ORIGNAL PACE 1D

OF POOR CUALITY



Consider a nonlinear syltem described by - Concerning | thu medel the followmg st.ruct.ural property
u'nneﬁxi. = .

x= £06P), x(to) = xo, (32) 5

where x € R" is the system state vecior, p € R’ is the
system parameter vector, and f € R” is a nonlinear vec-
tor function of x and p. Applying the rate trmformu" :
(3.1) to (3.2) leads to

¥ = k()W + £ f(¥5"1;p) £ F(x, k,‘l',;,P)L B ¢ 3°)

¥(to) = x(to)x(to) T (3.3h)

where F(x,x,¥,p) is a new nonlinear function. Tt should
be noted t.hat the transformed system (3.3) is not equiv- ™~

alent to the original system (3.2) in the sense that the RrX* and 6 ER. Itis 'O"h m@honmg that in (4.2)
stability of (3.2) does not necessarily guarantee the sta- ;. ¥ =z isnot réquited. This restriction is typically as-
bility of (3.3). However the stability of (3.3) abeolutely in_the literature. Equation ﬁ 3) represents the
guarantees the stability of (3.2). This is specified by the ‘well-known skew-symmetric pleperty. . - )
following lemma. N i §ot§;;g this pel:\iatxc;n repre hly r;]on:]mgm
jn & eeu syste not all the -
Lemma 3.3 . - megers is availabl
$et x be a rate function as defined before. Conudcr the , Facki 3l problem is state!
systems (3.2) and (3.3), related by (3.1). If system (3.3) o St s X
is stable (bounded or asymptotically stable), the systeni - “Given the dusired- pat §*) 2Find a contro!

(3.2) converges. to its equilibrium point with a certain
ROC. . . . I

ly on the joi.'u
al path, {g.9).

Proof: : el

Noting that x = x~!W and k™! is decreulng, f.Be mlﬁ
can be easily obtained. §
Based on this lemma, it is seen that if the tnuformad T . gl : g
system (3.3) is at least bounded stable, then the original -, A 3 2 B PN ep el ot °P]Y requires

one exhibits enhanced stability. This result wlnelif ‘an - - v

o

extension of [6] (where a special choice for x is M
i.e., kK = €*!) is used in the solution of the tracking p

lem. Note that since x could either be tracking arror; ' 2 ‘ le ROC

state estimation error, regulation error, or modeL@mi’-' ERE s Sl UG SN & work are appliec
mg error, the idea behind this lemma could . dmﬁeu':odr ik eery }uns for roboti:
in these cases. Investigation of this poesibility, besﬁd' s - - - ir with control

the scope of this work, represents an mtereltmg ﬁlxther
research effort. T

4. Apphcatlon to Robotic Systems

with n joints is
H(g;p)i+C(a.6:p)i+Glaip) =1, -~ |

where

r€ R® coatrol torque,

q,4,§ € R* joint pocltnom/velocxtxu/qcukrnbu

PE R’ equivalent system parameters, -

H(g;p) € R**" :ymmetm, positive, deﬁmh i

(4.7)

3 T w\n definite matrix
?ﬁ% “The comgroller structure for

C(q,4;p)§ € R*  joint torques and forces due ‘0 path tnckmg is given by
Coriolis and centrifugal effects, and
G(q;p) € R* torques and forces due to gravity. r = H(q;p)z, + C(4,4:P)v. + G(0:9) — KW, (4.8)

ORICHAL oaCE IS
OF POOR QUALITY
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where K = KT > 0 is a controller gain matrix, and
p € R* is the vector of paramieter estimates as determined
by the following algorithms.

]
i = —a,-[ W7¢i(9tq':yn zl)xz(r)df+ﬁ"(t°)'
T i=12..,s, (4.9)

where a; > 0 is an adaptation gain (design parameter),
$i(to) is the initial parameter estimate, and ®; is the i-th
element of the vector & defined by Equation (4.2).

Estimation Algorithm 2 (PI-Estimate

t
po= bilto) —ai [ WTRi(q, 3., 2,)6(r)dr
to
- BWT®i(q,4 w2 )62 (1), i=1,2,.8, (410)

where §; > 0 is one other adaptation gain.
Theorem 4.1

Consider the robot dynamics (4.1) with the controller
(4.8). If the parameters are estimated by (4.9) or (4.10),
then stable path tracking control is ensured. The rate-of-
convergence is specified by x~1(t), which can be chasen
by the designer.

Proof: Combining (4.1) and (4.8) yields the closed-loop

system dynamics,

H(g;p)(W + & 'W)+Cl(q.4;p)W = KW
+ Z(ﬁt"?ﬂ')"i(%d:yn-’-:) (4~11)

i=l
where Property 4.1 was used. Introducing the rate trans-
formation, ¥ = W, (4.11) becomes

s
H(g;p)¥+C(q,:p)¥ = O (Bi—pi)®i(g, 4, ¥s, 2. )6 K.

i=1

According to the criteria in [8], it is only necessary to
show the boundedness of the accumulated generalized
energy J¢ = [, ¥TK¥dr. Using the above equation,
Property 4.1 and integration by parts, yields

'
J = —/ \I'TH(q;p)\I'df—/ ¥7C(q,4; p)¥dr
¢ te

+ E/‘.(ﬁ;-—p.-)WTQ;x’(r)dr

i=1
< Cl+ 2 / (5 — YW #ixi(r)dr

where C3 = } W7 HWK?|1ui,. Inserting (4.9) and apply-
ing the following relation

/" [ Q(r)drO(7)d‘Y=% ‘: 0(7)41]’, (4.12)

ORMGINAL PAOF IS
OF POOR QUALITY

J¢ reads

, < o pi(to) — pi ?
Je C,’-E-E—[Ig———.——-]

ag

IN

i=1

] '—-it 2
+§[P: 21;50)]

] -
3 [pi — Bi(to)]?
< C3 +§ 2o < 0o, (4.13
where I = [ W7 ®x?(r)dr. The boundedness of .J
implies that W is at least L,. Note that W = £, the
result follows. (The result for Estimation Algorithm -
can be shown in the same way.) §
4.2 Mustrative Examples

To make the foregoing concepts clear, three example-
are presented in this section.

Example 1 Asymptotic Convergence
Suppose the control torque is of the same structure as

in (4.8). f x = 1, then ¢, y,, W are defined as beforr
and
z, =¢ — De.

Estimation Algorithm 1 becomes
1
pi=—ai | WT®i(g,4,¥s,2,)dr + Pi(to), i = 1,2,05.
to
Considering the proof of Theorem 4.1, convergence fo
this case is asymptotic.
Choosing x(t) as x(t) = 1 + ¢ gives

1
I+

z,=¢ - De—- W,
and ¥
W=€+DC: l—+t

Estimation Algorithm 2 is now

t
K = -C!.'/ WTﬁa(q,'i,vnz-)(l‘Ff)Qd"

to

- ﬂiqu’i(%d, y,,:,)(l + t)2 + ﬁl’(tﬂ),

i =1,2,...,s In this case, convergence is stronger tha
asymptotic due to the choice of x.
Example 3 Exponential Convergence

Let x(t) be the exponential function x(t) = e**. In thi

case
z,=§ —Dé— AW

W =¢é+ De=We .
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The parameter estimation algorithm is

. - . -
ﬁi = —ag / WTQ.‘(‘I:d, VD)zt)ezx'dr
te

:AWTQ:(%‘L Vs, 2, )N +pi(to)i = 1,2,...,8

This corresponds to the exponential tracking.

It is observed from the above examples that for differ-
ent n{t), different ROCs for the filtered tracking errors
are achieved. It is interesting to note that x(t) = 1 cor-
responds to the conventional adaptive control [1-2][4-5].
Note that in this case, W = ¥ and the ROC of W is
not adjustable. As for the exponential tracking, one only
needs to choose x(t) = e*!, where A > 0. Also it is possi-
ble to change the ROC over different time intervals. This
can be done by the technique shown in [8].

4.3 Robust Tracking with Adjustable ROC

Robust control of robotic systems has been extensively
investigated recently [1]. Most of the strategies are based
on upper bounds of the uncertain model. Obtaining such
bounds, however, is not trivial because H, C, and G are
complicated matrices depending on ¢, ¢ and p. Improper
determination of such bounds may lead to instability. A
strategy based on the maximum absolute value of each
element of H, C, and G is suggested as follows.

Let H,(.), C,(.) and G,(.) represent simplified versions
of H(.), C(.) and G(.), respectively. Also let p* represent

“the nominal system parameters and ¢* and ¢* represent

the desired trajectory.
For the following development, let

§H = [8hij] = H(g;p) - Hi(a";p°%),
C =[bci;] = Clq9,4:p)—Cilg*,4":P"),
G=[ba) = Glg:p)-Gil(e"P")

The robust control torque is given by

r= H,(¢";p")2,4Cs(¢",§": P" Wa+G,(¢"; p° ) - KWU,,

(4.14a)
where K = KT > 0 and U, is an auxiliary control defined
by

Ve = 3.3 #UGS)z,
i=1 ;'=1
+ Z}:' U('»J)v-+ZOGU(:) (4.14b)

=l j=t1

In equation (4 14b), U(i,j) sre ‘0 — 1’ matrices [9] and
:5,3 and s€ are scalars to be defined later. The track-
ing sublhty of the system is now addressed by the fol-
lowing result.

Theorem 4.2

Let the control strategy be defined by (4.14). If

VV.'Z,’.HI
“Vi‘q Vi‘i + V(t)'

‘l'j

OF PLQR QU ALITY

g - _ “’.‘3,,-6‘21-
4 [Wiys, l6i; + v(t)
P

IWilgs + v(t)’

where I.i.-,- = max|6h;;|, &; = max]éci;|, §i = max|ég;],
and x and v satisfy

]
/ x?vdr < Cy, < 00 (4.15)
to

or
K2 < Cy < {4.16;

then stable path tracking is achieved.
Proof (outline):

Note that with the control (4.14a), the closed-looy
model becomes

H(g;p)(W + ks~ 'W) + C(¢, GP)W = —KW
+ 6H(q;p)z, +6C(q,4;:p)vs +6G(q:p) + Us.

Introducing the transformation ¥ = xW and using U, in
(4.14D) gives

HiGp¥ + C(q d'p)‘l’ =-K¥

+ EZ 8 +6hx] U(l ])3,

i=1j=1

+ ZE[&S + bei;JU (4, ) ya®
i=1j=1
+ zﬂ:[‘? + 6giJU(i)x.

i=1

Considering the performance index J¢ = fl'o TR dr i
is not difficult to show that

t
J¢ = /w"xwr
to
n n L2
lWiza lh"
C? + — Rk ldr
LD ), Wl +0
L ! IW-'yrIE?'
+ Mk 2ydr
E /s., |Wiys; 16 + v

IA

i=1j=1
n t -2
|Wil3; 2
—_t_x*yd
* =1 |W'|5.'+V~ ver
< C’+Z / x3vdr
ix] j=l}

+ Z /nudr+2/nudr

i=l j=1 =]

With the choices for x and v as in (4.15) or (4.16), either
the index is bounded or its time average is bounded and
the result follows. §
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This strategy is easy to apply since the upper bound
for each element, |6hijlmes, |8¢ijImes, and |6gi|mas, can
be easily obtained by using the facts that |sin(.)] < 1 and
Jeos()| < 1.

Note that there are many possible choices for v (see
the table below, where ug > 0,v; > 0 and vy > 0). The
impact of v (and &) on system performance is discussed
later.

- =  Table 4.1 Poesible Choices for v

~vat -vat? vy (148

Ho | vie™™ vye~ uisy

- - —wgt? 2
vie="? vye~ "2t vye— "3 vi(14t

T+ T+ T+ _-L‘_le'ﬂ

—wyt

vye= "2 vie uge="at vi{l+4t

2 2
v,e” "2 vye= 3’ yre~*a! va{14t7)
1413 1§03 14t -

’v:I

The strategy presented herein exhibits the following
features. The structure is simple}nd most of the re-

quired computetions can be performed prior to real-time
operation. .As for the computation of H,,C, and G,,

- one may choose them to be constant matrices/vector (or
diagonal matrices for H, and C,), or simply sero. Addi-

tionally, time varying uncertainties can be easily handled
by the strategy. Again since the rate function is utilized,
the ROC is adjustable.

4.4 Tracking Performance Analysis

In addition to the tracking stability, it is important to
explore the tracking performance that the strategies can
achieve. The criteria for testing stability can also serve
this purpose. The following is a brief discussion of this
issue. Only adaptive control is considered. Referring to
the proof of Theorem 4.1, it is found that the performance
index for both the Estimation Algorithms 1 and 2 can be
computed as

JU I =+m+m

where
n = WTH(g(r);p)Wr(T)lr=1
m o= 3 | (- p)WT ®ik?(r)dr
iz] Ve

m = ~WIH(r) )W (T)lr=s-

It is seen that only m changes for the different estimation
algorithms. When  is estimated by the I-Estimate (4.9),

'71 = 7—2 ‘(ﬁ—n)W"hx’dr

imy Ve

= - {38+ - At} £ m(D).
ixl

For the PI-Estimate, since p; is updated by (4.10),

' gt
m = —Z (ps — p)WT ®;x?(r)dr

i=1 7%
= -2':{%1? +[pi - f’s’(to)]l'i}
i=1

t
- B | (WT®)2k2dr & n(11).

o

Thus
m(I1) = m(D) - fi / (WT )23 (r)dr < m(]).

Correspondingly it is indicated that
Je(In < JA(I),

which implies that better tracking performance can be
achieved by using the PI-Estimate. This conclusion
agrees with the comment made in [3]. Simulation results
presented in Figures 4.1-4.2 also verify this point (see (7]
for more details).

At this point, we are also able to address the effect
of the initial estimation on tracking performance. Tradi-
tionally, it is suggested that the initial estimate may be
chosen arbitrarily (zero in general). This is because the
stability is global and the initial estimate does not affect
tracking stability. However, as clearly shown in (4.13),
the initial estimate affects the overall tracking perfor-
mance in the sense that a “better” initial estimate results
in a tighter bound J¢. Simply choosing p;, = 0, as sug
gested typically in the literature, is among the “worst”
choices. Choosing the nominal value of p; as the initial
estimate results in a smaller J¢, implying better perfor-
mance. This is also confirmed by simulation results (se¢
[7]). These points, however, are not directly evident fron:
the Lyapunov stability method.

Finally, the impact of v, x(t), K, and D on system
performance is discussed. It is noted that K and D are
required to be symmetric positive definite. Their choices
are related to the desired robustness, speed of response,
and disturbance rejection properties. The roles of x and
v are related to the rate of convergence. Note that since
the control torque T is defined as in (4.8), if x and v are
chosen such that ¢ and ¢ rapidly tend to zero, then the
control torque also rapidly tends to the desired value, 7°.
However, if they are chosen so that the convergence of
rate is too fast, the control torques in the transition state
may exceed the admissible values. Hence some trade-offs
between ROC and control energy have to be made in
practice.

5. Concluding Remarks
This paper has demoustrated the application of the cri-
teria established in (8] to robotic systems. Performance
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analysis based on these criteria was also given. Addi-
tional applications of these results can be found in (7).
Note that the criteria and their applications are based on
continuous systems. Given that discrete time systems are
extensively encountered in practice, extensions of these
results to discrete-time systems represent an important
research effort. Due to the limited space, results con-
cerning this aspect are omitted. Interested readers are
referred to (7] for details.
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